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Emotions are an intrinsic part of the social media user experience that can evoke negative behaviors such as cyberbullying
and trolling. Detecting the emotions of social media users may enable responding to and mitigating these problems. Prior
work suggests this may be achievable on smartphones: emotions can be detected via built-in sensors during prolonged input
tasks. We extend these ideas to a social media context featuring sparse input interleaved with more passive browsing and
media consumption activities. To achieve this, we present two studies. In the first, we elicit participant’s emotions using
images and videos and capture sensor data from a mobile device, including data from a novel passive sensor: its built-in
eye-tracker. Using this data, we construct machine learning models that predict self-reported binary affect, achieving 93.20%
peak accuracy. A follow-up study extends these results to a more ecologically valid scenario in which participants browse
their social media feeds. The study yields high accuracies for both self-reported binary valence (94.16%) and arousal (92.28%).
We present a discussion of the sensors, features and study design choices that contribute to this high performance and that
future designers and researchers can use to create effective and accurate smartphone-based affect detection systems.
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1 INTRODUCTION
Social media use is widespread. In 2019, 72% of US adults reported use of at least one Social Networking Service
(SNS) and most (74%) indicated they log in daily [21]. Facebook, one of the most popular sites, has more than 220
million US users and enables posting, browsing and commenting in and on diverse media formats including text
status updates [7], images [124] and videos [95] that are either created personally or drawn from online sources
such as other SNS [10] or news [117] and entertainment channels [102]. This material often evokes affective
responses [6]. Indeed these reactions are arguably a key driver for use of the service and can have many positive
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benefits [85]. For example, it has been reported that Facebook users can feel closer to friends [17], achieve or
experience increased levels of social capital [37] or better cope with stress [15] due to the consumption of contents
on the service. However, the affective qualities of SNS have also been linked to a broad range of more negative
outcomes and behaviors such as decreased affective well-being (potentially due to envy [113], or unflattering
social comparison [97]), cyber-bullying [101], flaming [2], trolling [25], and "indignant disagreement"[73]. These
phenomena have contributed to the emergence of terms such as "Facebook Depression" [87] defined as depression
that develops when spending prolonged periods on social media sites.

Researchers have responded to the ubiquity of emotions on SNS by developing systems that detect emotions in
order to achieve various goals such as protecting users from inappropriate content [24], identifying states such as
excessive sadness [126], loneliness [92] or even conditions such as depression [32], postpartum depression [30]
and the cumulative stress that signifies greater suicidal tendencies [74]. This work typically relies on analyzing
users’ messages and posts for language [59, 91], sentiment [79], or style [30, 32]. While valuable, we note these
linguistic approaches suffer from several critical problems. First, they are reliant on access to highly private
user messages and posts. Second, they require large data sets captured over the medium-to-long term—typically
thousands to hundreds of thousands of posts [30, 50, 120]. Finally, they are based on explicit user-generated
content, whereas research suggests that the vast majority of user activity on SNS is the consumption of content
generated or posted by others [16], in the form of viewing and browsing feeds and media. These factors mean
that while current emotion detection on SNS works well given access to long-term records of user posts, it is not
applicable to live analysis of the typical day-to-day SNS experience of emotions that are evoked in the course of
fragmented browsing and commenting on content posted by one’s connections.

This is problematic because the transient emotional states that occur in everyday settings have wide ranging
impacts. Although they are typically overlooked by the individuals who experience them [5], research indicates
transient emotions influence a very broad set of general human qualities and activities, including: aspects of
cognitive performance such as attention [38] and decision making [5]; social assessments in the form of trust [36]
and; in the prevalence of behaviors such as procrastination [110]. Transient emotions can even reduce accuracy
in the trivial repetitive work task of number entry [18]. Reflecting the importance of these passing affective states,
and the mundane settings in which they typically occur, researchers have identified an opportunity to detect an
individual’s affective states using passive sensor data collected from mobile smart devices. This body of work
leverages the advanced touch and motion sensors built into these platforms and has tended to rely on specific
tasks that generate a substantial amount of user input, such as gameplay on a tablet computer [44] or Fitts’ style
tapping tasks and blocks of repeated swipes on a phone [28, 82], to achieve detection rates as high as 89.10% for
binary affect. These studies highlight the potential for smartphone sensing systems that can detect the affective
states of users and enable applications to adapt or respond appropriately.
We seek to build on this promising work by applying the beneficial properties of sensor-based emotion

detection during smartphone use—the immediacy and reliance on data generated during generic user interface
events such as taps or swipes—to a real-world SNS scenario. To achieve this, we focus on two major research
gaps between prior work and our target SNS usage scenario. The first gap is between the highly structured,
atomic and controlled tasks (e.g., Fitts’ tapping [82], number entry [18], swipe-based gameplay [44]) that have
been previously studied and the diverse, sporadic media consumption-orientated activities that characterize SNS
use [113]. To address this gap, and inspired by related work in areas such as gaze-based personality detection [8],
we study a novel sensor channel—mobile device-based eye-tracking—that directly and continuously captures
user data during browsing and media consumption activities. We initially study this approach’s feasibility in a
controlled setting: we use pre-validated materials (both videos [98] and images [64]) to elicit emotions in artificial
tasks designed to replicate common types of viewing, browsing, and posting interactions that occur during social
media use. We measure the transitory emotional states evoked via a standard self-assessment questionnaire [115]
and show that binary affect can be predicted with up to 93.20% accuracy, or with up to 88.49% using eye-tracking
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data alone. Encouraged by these results, we identify a second research gap in terms of the ecological validity
of affect elicitation procedures used in both our study and prior work on smartphone-based affect detection.
Specifically, we highlight a reliance on controlled exposure [8, 28, 82] to validated and vetted affect elicitation
materials [64, 98] and suggest that reactions to such contents may differ from those that occur in response to
naturally occurring affect. To address this gap, we conducted a follow-up study using an instrumented version of
the popular SNS application Facebook and focused on predicting participants’ spontaneous affect as it emerged
from normal interactions (e.g., browsing the news feed, reacting and writing comments) with their private social
media account. In this study, we captured self-reports of both valence and arousal [12] to support a more detailed
analysis of transitory emotion. The results indicate that binary valence can be predicted with up to 94.16%
accuracy and binary arousal with up to 92.28% (or 92.68% and 89.42%, respectively, for eye-tracking features
alone). We argue that these figures are sufficient to support emotion-aware application and service design in the
context of SNS use.

The core contribution of this paper is these demonstrations – we show that transitory emotions can be predicted
using off-the-shelf smartphones during SNS use with accuracies of up to 94% in a binary classification task.
This is meaningful in that it moves beyond prior work’s focus on artificial and repetitive input tasks and vetted
affect elicitation materials to a real-world application use case: the emotions we experience on social media
matter [24, 32]. The techniques used to achieve these outcomes are also non-trivial, involving novel sensor
channels, procedures and methods. To operationalize our work for future researchers, designers and developers
who seek to include affective detection capabilities in their work, we provide a detailed explanation of how
the different aspects of our studies led to the strong performance we report. Specifically, we discuss the impact
of normalization procedures, assessment periods, different sensor channels (motion, touch and eye-tracking)
and the role of individual features. This discussion unpacks the results of our studies and enables us to close
each with recommendations for how future researchers and designers can successfully integrate affect detection
functionality into their studies and applications in terms of what content they should monitor, when they should
do it and how they should analyze it. In this way, this paper contributes practical knowledge that will facilitate
the development of future affect detection systems on mobile devices.

2 RELATED WORK

2.1 Models of Emotions and Measurement
The research literature describes a wide range of models of emotion. A common and longstanding approach is to
map emotions to different points on a multi-dimensional space [119]. Of the various two-dimensional emotion
schemes that have been proposed, the circumplex model [96, 116] is based on perpendicular axes of valence and
arousal and is arguably the most widely used [96]. It has been frequently applied in HCI research, including in
examples such as De Choudhury et al. [29]’s work to quantify moods on Twitter through crowdsourced lexical
analysis and Lee et al. [66]’s work on a Twitter client that can detect emotions during posting by analyzing data
from smartphone sensors. Due to its longstanding and widespread use, including in closely related research [82],
we opt to use the circumplex model throughout this paper.

We operationalize the emotions in this model as short-lived physiological and behavioral changes triggered
by visual (pictures) and multi-modal (video) stimuli [111]. In this context, the emotional responses an individ-
ual experiences can be measured using traditional psychology-based approaches such as self-assessment, an
established method that is widely viewed as simple, quick, and effective [100]. There are many well-known
self-assessment instruments [72] such as the Positive Affect Negative Affect Schedule (PANAS) [115] and the Self
Assessment Manikin (SAM) [12]. PANAS has been widely deployed for various purposes such as assessing life
satisfaction [61] and monitoring mental health [11]. It consists of 20 words representing different emotions and
respondents indicate their feelings with respect to these terms over various time periods including at the present
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moment [115]. It is primarily used to assess valence. SAM is a collection of pictorial manikins that reflect varying
degrees of emotional valence, arousal and dominance, typically accompanied by a 9-point numeric scale [12].
Due to the simplicity of the SAM instrument [55], it has been widely employed in many research areas including
HCI [52, 82]. To achieve different experimental objectives, in terms of the scope, time cost and reliability of the
affect self-assessments captured, we deploy either PANAS or SAM to capture transient emotional states in our
studies.

2.2 Emotion in Social Media
Considerable prior work has sought to understand how people experience emotions on social media [13, 67]. This
work is predominantly reliant on corpora of user-generated data, most commonly textual content such as messages
and posts. For example, De Choudhury and De [31] study how posted text can reveal emotional and mental
distress [31], while Hasan et al. [50] examine similar data to infer people’s basic emotional states, Mohammad
et al. [80] propose a system that uses sentiment analysis of 160 character messages (tweets) to predict both
emotion and purpose [80] and Gao et al. [43] present a tool that classifies Facebook chats and posts as exhibiting
either positive or negative emotions. Furthermore, in addition to text-based analysis, other types of user data
that have been deployed to detect or predict emotions includes pictures [39, 120, 124] and social interaction
information [39, 70]. The diversity of this work highlights the importance and ubiquity of the emotions expressed,
and the emotional content posted, on SNS.
However, from the point of view of detecting transient emotional states, there are several limitations with

this prior work and, specifically, the data sources it relies on. Perhaps most fundamentally, posting content is
not the only, nor even the dominant, activity on many SNS [16]. Rather, much activity on SNSs is browsing,
viewing, reading or watching content posted by others [118], so called passive activities that researchers have
suggested are disproportionately responsible for the reductions in affective well-being [113] that some SNS users
experience. Techniques based on lexical or content analysis lack viable data sources to cover these important
and commonplace use scenarios. Lexical analysis typically also operates over sustained time periods (e.g., over
multiple posts [30, 31]) with the goal of detecting relatively persistent affective states [20, 80]. It is likely to be
less effective at detecting the transient states that are the focus of the current article, as they may prevalently
occur in response to passive consumption activities and thus express relatively weakly in posted text. Finally, we
note there are privacy concerns inherent in systems that analyze a user’s posted text and other content [43, 57].
These can exert a wide range of impacts including reducing the number of posts users produce [104].

Reflecting these concerns, in this paper we avoid reliance on any corpora of private user-generated data.
Instead, our technique to detect emotions uses raw sensor information gathered from smartphones that represents
essentially physiological data about the motions, touches and glances that users make with, on and at their devices.
This approach allows us to capture moment-to-moment data during all social media activities, including viewing
content as well as posting it, and has previously shown promise in capturing transitory affective states [82]. In
addition, privacy concerns related to these types of data are reduced compared to content forms such as text
messages and photographs [57].

2.3 Smartphone Sensors to Detect Emotion
A range of physiological responses accompany emotional changes. Previous studies indicated emotion can be
detected reliably from physiological reactions such as the production of gestures and postures [48] and also from
diverse physiological signals [108]. However, these traditional techniques typically require dedicated hardware
such as, for example, high-end heart rate variability monitors [22, 106]. The cost of acquisition and lack of
availability of these devices in the general population, together with the requirement that they be continuously
worn, represent major barriers for widespread adoption of this type of emotion detection. To address these
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problems, several prior studies have built on the observation that smartphone use is associated with affective
experiences [97, 122] to use these widely deployed platforms to detect emotional states [19, 28, 68]. While evidence
for the effectiveness of this general approach is gathering weight, we note that existing studies focus on empirically
elicited affect and artificial, sustained data input tasks. Work examining more applied scenarios, such as SNS
use, is in its infancy— Zhang et al. [121], for example, simply propose their data collection infrastructure and
procedure. The following subsections review the literature on mobile phone based affect detection, categorized
by the sensing channels it relies on and highlighting how the studies reported in this article advance the field.
We note that many of the articles in this review include data from multiple sensor sources: our review structure
in a simplification for convenience and multi-modal approaches are, in fact, the default in this research area.

2.3.1 Motion Sensors. Smart device motion sensors capture the movements of a mobile device in terms of
accelerations, rotations and, via filtering, absolute changes in orientation. Their ubiquity, low cost and the
richness of the data they capture has meant they have been widely used in work seeking to detect emotions
during smartphone use [68, 89]. Early work used accelerometer data to distinguish people’s activity (walking,
sitting, running, standing) and showed this, in conjunction with other smartphone data such as location traces and
communication patterns, could predict daily mood with an accuracy of around 50% on three different five-level
dimensional scales [75]. More recent work has suggested that phone accelerometer data during walking alone
(basically a proxy for gait) can yield detection accuracies of between 50% and 75% for valence and arousal, each
segmented into the three levels of low, neutral and high [88]. Motion data has also proven useful in classification
of persistent clinical conditions: Cao et al. [19] report that motion data during typing contributes to a 90.31%
accuracy in predicting the score participants attain in clinical assessments of bipolar disorder and also provides
insights into the physical behaviors underlying this, such as a tendency for participants with depressive or manic
symptoms to hold their phone at more horizontal angles. These diverse results highlight that motion and pose
data captured from smartphones represent a powerful channel that can be used to detect and predict a wide
range of affective states. Based on these prior results, we use motion sensor data in our studies. We move beyond
existing studies of this modality by exploring its veracity in detection of the transient affective states that occur
in response to relatively short passive content consumption activities in an SNS use scenario.

2.3.2 Touch Sensors. Modern touchscreens also provide a rich source of information that can be used to detect
affective states. Work has tended to focus on situations in which a large amount of data is generated rapidly such
as during intense game play [54], text entry [45, 114] , or in repetitive scripted experimental tasks such as Fitts’
law tapping or performance of sequences of swipes [82]. Application scenarios have tended to focus on these
data collection scenarios with, for example, an emphasis on real-time monitoring [54] or personalization [44] of
game experience. Researchers have also indicated that advanced touch features can be useful: touch pressure,
for example, helped Gao et al. [44] achieve accuracy of between 69% and 77% in discriminating four different
emotions: excited, relaxed, frustrated and bored. This study also suggests that specific emotions may be associated
with specific touch patterns, such as exerting higher pressure during frustrating experiences. These findings
indicate that a wide range of emotions are expressed in the currently observable qualities of touch interaction on
smartphones. Based on these promising results, we include touch data in our work. We extend prior work on
this modality by contributing data from a more ecologically valid setting involving diverse and sporadic input
activities rather than the sustained and consistent tasks that have been previously studied.

2.3.3 Camera Sensors. Sensing data frommobile device camera feeds has been widely adopted to classify people’s
emotion. An obvious approach is to extract facial expressions [103]. Suk and Prabhakaran [105], for example,
report on a real-time mobile application that can recognize facial expressions for six basic emotions (plus neutral)
with an accuracy of 72%. A major disadvantage of this approach relates to concerns about the privacy issues
involved in the collection and continuous analysis of face image data [1, 53]. We also note there may also be
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substantial changes in how the face expresses emotions during private mobile device use compared to, for
example, social interaction with another person. Data about eye-gaze is another promising source of information
about emotions. Prior examples use stand-alone eye-trackers to assess inner states elicited by images [63] or
videos [4, 125]. Images, in general, have led to stronger performance, with a reported accuracy of up to 86.74% in a
binary arousal classification task compared to accuracies of up to 66% using video media. Due to the nature of the
information provided by eye-tracking systems, such as eye positions, pupil sizes, or event occurrence rates (e.g.,
of blinks), privacy concerns with this type of data are greatly reduced. We note that due to the relatively recent
arrival of gaze tracking functionality on consumer smart devices, the potential of this information channel to
support affect detection on mobile devices remains scantly explored compared to the more established channels
of motion and touch. We are not aware of any prior work using mobile phone based eye-tracking for affect
detection and believe we contribute the first data on the suitability of this modality for mobile phone based affect
detection.

3 FEASIBILITY STUDY
This study seeks to adapt prior demonstrations of emotion detection using smartphones [82, 122] to a social
media scenario. In order to do this, we both extend and restrict the data collected. Specifically, we extend the data
collected through use of an additional sensor channel—we add eye-tracking to the typical channels of motion [19]
and touch [44, 47] input. We also extend capture of motion data by recording filtered pose data in addition to raw
sensor signals. In contrast, we restrict the data collected through carefully designed input tasks that mimic social
media use patterns: images [64] and videos [99] are presented to participants to elicit emotions. Participants
were also asked to perform sporadic taps and swipes, and enter short text responses, as they browse, navigate
and respond to this content. These diverse and fragmented tasks stand in contrast to the repetitive and highly
controlled tasks (e.g., number entry [18] or Fitts’ tapping [82]) that have been previously studied in this area. We
aimed to assess whether our extensions are sufficient to compensate for our restrictions: of whether emotions
can still be accurately recognized by smartphones in this more data-rich but input-sparse setting. The study was
approved by the host university’s Institutional Review Board (IRB).

Fig. 1. Experimental Procedure of Feasibility Study. Each affect-session consists of four phases: a cool-down phase that
captured baseline data; an elicitation phase in which media were presented; a responding phase that collected comments; and
an assessment phase that recorded people’s emotional state through questionnaires. In the first two affect-sessions, videos
[99] were used in elicitation phase, while in the last two sessions, images [64] were shown. The study elicited two basic
emotional states–positive and negative affect (marked as (a) and (b)). The order of emotion conditions was fully balanced.

3.1 Study Design
The study sought to assess the predictive power of sensor data from a smartphone in detecting emotions. Following
prior work in this area [26, 82], it was structured as a series of affect-sessions each of which involved the following
four phases: a cool-down phase in which baseline data was captured; an elicitation phase in which participants
browsed evocative media; a responding phase in which they typed comments based on their reactions to the
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media; and an assessment phase in which they completed questionnaires to record ground truth about their
emotional state in the session. Using this structure, the study elicited two basic emotional states—positive and
negative affect—in a repeated measures design. The order in which these emotion conditions was presented was
fully balanced among participants to control for order effects. In each emotion condition, participants completed
four affect-sessions. In the first two sessions, videos were used to elicit affect, while in the last two sessions,
images were used. Participants were also required to complete a recovery session in between the two emotion
conditions. This was composed of a mandatory 90-second-video showing natural scenery accompanied by the
suggestion they relax. In line with prior work, it was intended to minimize any carryover of emotions between
the two conditions [26]. A summary of the study design and procedure is shown in Figure 1. We describe the
materials and procedures used in the affect-sessions below.

3.2 Materials
Each affect-session was composed of four sequential phases: cool-down; elicitation; responding and; assessment.
They were all displayed within a single mobile study app built for the iPhone X (screen size: 375 x 812 points,
or 62.4 x 135.1 mm) using Swift 5. Each phase is described below.

3.2.1 Cool-down. In this phase, we followed typical procedures [8] to ensure participants have the opportunity
to recover from prior affective stimuli and also to provide baseline data for normalizing responses to subsequent
affective stimuli. Specifically, participants completed a set of four simple and affectively neutral tasks and the data
captured during this phase was used to normalize data from the immediately subsequent elicitation, responding
and assessment phases. This data was not used as training or testing data during model development. The four
tasks generated data for a range of common interface events (tapping, scrolling, typing/chatting) and also uncued
eye movement patterns. The tasks are illustrated in Figure 2. They were always presented in the following order
and entailed:

• Target Selection. Participants tapped a sequence of five circular targets (diameter 80 points, or 13.3mm) that
appeared sequentially on the phone in random locations.

• Scrolling. Participants were requested to scroll down until a button was reached, then select it. The scroll
view was 3400 points high.

• Text Entry. Participants were presented with a single randomly selected phrase from the set introduced
by MacKenzie and Soukoreff [76]. They were required to enter this phrase into a text box using the standard
iPhone on-screen keyboard.

• Eye movement. Following prior work [40], participants were presented with a fixation stimuli—a black cross
on a white background—for 15 seconds and instructed to rest.

3.2.2 Elicitation. Videos and images were presented to elicit emotions in task structures designed to mandate
browsing the content so that touch interactions such as taps and scroll events could be recorded. The procedures
and content for each media type differed and are described below.

• Videos. Libraries of emotionally labeled video clips are commonly used to reliably elicit emotions in empirical
settings [8, 82]. In this study, each participant was exposed to a total of four film clips from the widely
used FilmStim library [98]. We selected specific videos to achieve strong emotional peaks. The videos were
FilmStim clips from the movies "Seven", "American History X", "Benny & Joone" and "There’s Something
about Mary" (subsequently referred to as "Mary" in this manuscript) that are rated as eliciting, respectively,
fear, anger, tenderness, and amusement. We treated the first two clips as eliciting negative affect and the
last two as eliciting positive affect. To reduce participant fatigue and provide more evenly long clips [8],
we shortened them by conducting a brief study with three participants. Each participant watched the clips
and verbally indicated periods in which they experienced emotional peaks. The clips were then edited, to
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Fig. 2. User Interface of the study app. The Cool-down phase consists of four tasks. They are: (a) Target Selection, (b)
Scrolling, (c) Text Entry, and (d) Eye movement. The Elicitation phase shows either a set of short video clips (e), or an image
gallery (f). After eight seconds displaying each image, a right swipe control is enabled that moves to the next image (g). The
Responding phase (h) displaying a popup window for entering a short comment. The Assessment phase (i) displayed the
PANAS self-assessment questionnaire. Only the English language version of the app is shown.

between 57 and 80 seconds, to include only these affectively prominent periods (see Appendix A.1 for full
details) To make the viewing experience more akin to browsing social media contents, we sliced each clip
into five sequential segments arranged in a vertically tiled “news-feed” layout—see Figure 2e. Participants
tapped to watch each segment, then needed to scroll down to view the following segment. Participants
were not able to scroll past segments until they had been watched in full, ensuring the complete clip was
watched in chronological order.

• Images. Sets of tagged images are also widely used to elicit emotions in empirical studies [8, 9, 27, 28, 41]. In
this study, we used images from the International Affective Picture System (IAPS) dataset [64], one of the
most common resources in this area. It provides images rated in terms of valence, arousal and dominance.
To protect participants from potential emotional distress, we excluded images of extreme valence that
could be disturbing as suggested by Goncalves et al. [49]. We then selected ten images with high valence
(mean: 7.65, SD: 0.29) to elicit positive affect and ten with low valence (mean: 2.3, SD: 0.57) to elicit negative
affect (see Appendix A.2). We grouped these images into four sets of five, one for each affect-session. To
integrate image presentation with user input, we used a simple gallery design that showed each image in a
set of five for a minimum of eight seconds, then required participants to swipe right to move to the next
image—see Figure 2f, g.
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3.2.3 Responding. After viewing and browsing the content to elicit emotions, participants were presented with
a popup window that prompted them to enter a short (minimum of 30 characters) comment describing their
feelings and reactions to the content—see Figure 2h. The goal of this phase was to capture touch input data
during the typical social media task of posting a brief textual comment in response to viewed content. We did not
store the entered text to ensure privacy.

3.2.4 Assessment. In this phase, participants completed the 20-item PANAS emotion self-assessment question-
naire. We instructed participants to report on their current feelings and emotions, an established use of this
instrument [3]. To ensure comprehension we presented PANAS in both English and the local language [69]. We
used a non-conventional presentation format for PANAS that stacked the questions vertically (see Figure 2i)
while retaining the standard five response options. We opted for this design to capture additional touch data
events (e.g., taps, scrolling, swiping) during questionnaire completion.

Table 1. Feature groups and specific features for each group.

Group Features Description

Motion [34]
Acceleration (x, y, z) Acceleration in G’s (gravitational force)
Rotation (x, y, z) The rotation rate as measured by the device’s gyroscope.
Core Motion (pitch, roll, yaw) Processed device-motion data that remove environmental bias.

Touch [35]

Touch count The number of times the screen was touched in 15s window.
Hold duration The duration of each touch in a 15s window
Inter-tap interval The time between each touch in a 15s window
Speed The overall movement speed of each touch in a 15s window
Distance The overall distance of each touch in a 15s window
Touch pressure The force applied during each touch (sampled at 60Hz)
Touch area The radius of each touch (sampled at 60Hz)

Eye-tracking [33]

Blink The coefficient describing closure of the eyelids over the [left|right] eye.
Look down The coefficient describing movement of the [left|right] eyelids consistent with a downward gaze.
Look in The coefficient describing movement of the [left|right] eyelids consistent with a [right|left]ward gaze.
Look out The coefficient describing movement of the [left|right] eyelids consistent with a [left|right]ward gaze.
Look up The coefficient describing movement of the [left|right] eyelids consistent with an upward gaze.
Eye squint The coefficient describing contraction of the face around the [left|right] eye.
Eye wide The coefficient describing a widening of the eyelids around the [left|right] eye.

3.3 Procedure
The experiment was conducted in a quiet office environment with seated participants, and controlled light and
temperature. Participants were first introduced to the experimental procedure in a briefing session. Participants
were informed that the content seen in the study might evoke strong emotional responses and reminded of their
right to terminate participation in the study at any time. If they opted to continue, participants then signed
consent forms, completed demographics and were presented with detailed instructions and the mobile phone
running the study. An experimenter was available to answer questions about the instructions and demonstrate
use of the app. We provided no indication about the detailed purpose of the study, instead simply indicating it
was intended to explore the design of new social media services. The study then began and each participant
completed four affect-sessions, as defined in the materials section. After the study was complete, we debriefed
participants as to the purposes of the study and solicited comments.

3.4 Participants
Twenty participants were recruited through word of mouth, social media, and a local university’s online forum.
To create a less variable environment for eye-tracking, participants were screened to ensure they did not wear
corrective eye-glasses or contact lenses and had not previously undergone laser eye surgery (e.g., LASIK).
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Additionally, we screened participants to ensure they were an account holder on at least one locally common
social media platform (e.g., Facebook, YouTube, Twitter, Instagram, Facebook Messenger, KakaoTalk). They were
requested not to wear eye-makeup during the study session. In total, 11 participants were male and 9 female, with
a mean age of 24.25 (SD = 5.4). They came from seven different countries and 14 were undergraduate students,
3 were graduate students, and 3 were researchers. Using 5-point Likert scales (1 = Very poor, 5 = Very good),
they self-reported a high familiarity with both computers (M=4.65, SD=0.62) and smartphones (M=4.8, SD=0.87)
and were confident in their ability to understand English conversation (M=4.45, SD=0.67). Participants received
approximately $10 as compensation for their participation in the experiment.

3.5 Data Collection and Preprocessing
3.5.1 Features. We retrieved three types of features from the iPhone during the study: 1) motion data from
Core Motion framework [34], 2) touch data from UITouch [35], and 3) eye-tracking data from ARKit [33]. The
frequency of motion data was set at 60Hz, eye-tracking data was 30Hz and touch data was recorded for each
touch event, with continuous data (e.g., pressure, size) sampled at 60Hz. Features were chosen based on previous
work in classification of human inner states using mobile devices (e.g., [45, 82, 94]), such as speed, rotation, and
acceleration. We describe each of the 30 features we captured in Table 1. Data was collected in all four phases of
each affect-session.

3.5.2 Data Preprocessing. We analyzed the data using Scikit-learn [93]. We first imputed data to replace missing
or undefined values (0.001% of data) using a k-Nearest Neighbors approach based on the full set of other column
values. We then divided the data from elicitation, responding and assessment into non-overlapping windows
of 15 seconds, a typical period used in prior studies of smartphone-based emotion detection [123]. For motion
and eye-tracking data in each window, we then calculated basic summary statistics for each feature: minimum,
maximum, mean, median, standard deviation, and variance. For continuous touch features such as pressure and
size, we calculated summary statistics for each touch, then averaged these over all touches within each window.
Summary statistics were also calculated over all touches in a window for the measures of hold-duration, inter-tap
interval and speed, while touch count was simply represented as a total.
In order to reduce the impact of features with difference ranges of magnitude and natural performance

variations over time, we scaled and normalized all data. Specifically, for each affect-session, we expressed each
metric captured in the elicitation, responding and assessment phases in terms of its magnitude relative to extremes
of the data observed in the preceding cool-down phase [8]. We then normalized data for each feature. These
processes preserved the shape of the original distributions, did not reduce the importance of outliers, and also
ensured all features were on the same relative scale.
To define target labels, we analyzed the PANAS self-assessment score. We defined PANAS binary emotion

via an affect balance score [61] computed by subtracting the negative affect score from positive affect score
(PA - NA). Following prior work [61], we partitioned the affect scores into positive and negative zones using
entropy minimization to derive a simple threshold value: -1.5 for our data set. This results in one target label per
affect-session. Thus, each window in an affect-session is labelled as exhibiting positive or negative affect based
on the self-reported data.

3.5.3 Classification. We selected eight classifiers for study based on closely related prior work (e.g. in [44, 45, 82]):
ZeroR, AdaBoost (AB), Decision Tree (DT), k-Nearest Neighbour (kNN), Logistic Regression (LR), Naive Bayes
(NB), Random Forest (RF), and RBF-kernel Support Vector Machine (SVM). We used default settings for these
algorithms. We included the ZeroR classifier as a baseline; it simply predicts the most frequent label it encounters
in the training set. To minimize the chance of over-fitting and reduce subject bias, we assessed the performance
of each classifier using leave-one-subject-out cross-validation. This approach entails constructing an independent
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model for each participant in a study. Each participant’s model uses the full set of their data for testing and all
data from other participants for training [8, 60]. As our study involved 20 participants, we thus constructed 20
independent models and all results reported depict the mean performance over this set of models. The advantage
of using this method is that it provides a robust and unbiased evaluation of how well models derived from training
data fit independent testing data.

Furthermore, for each model, we executed both feature selection and data processing steps. Feature selection
used both filter and wrapper methods [112] to screen and refine the final feature set and was conducted using
only training data. The process began by first removing constant features with zero variance and quasi-constant
features with variance less than 1%. We then calculated the correlation matrix of the remaining features. If two
or more features were highly correlated (Pearson’s r greater than 0.8), we retained only the one most highly
correlated with the emotion labels. Second, we applied recursive feature elimination using a Linear-kernel Support
Vector Machine (SVM) and five-fold cross-validation to the remaining features. Data processing procedures
tackled the class imbalances in our data set (see Section 3.6.1). Imbalanced classes present a challenge for predictive
modeling machine learning algorithms as these generally expect an equivalent number of examples for each class.
This can lead to low performance for minority classes. To handle our imbalanced data sets, we over-sampled
the minority class using Synthetic Minority Oversampling Technique (SMOTE) [23]. This method generates
synthetic samples based on the nearest neighbors of feature values in the minority class and reduces the chance
of over-fitting by providing more related minority class samples for classifiers to build larger decision regions that
contain nearby minority class points [23]. We applied SMOTE only to the training data. We kept the independent
testing data unbalanced to reflect the genuine distribution of classes we recorded in the study. Finally, we assessed
the classification performance for each model by calculating mean accuracy and class-wise F1-score.

Although leave-one-subject-out cross-validation approach confers strong benefits in terms of greatly reducing
the impact of model over-fitting, the per-subject feature selection process it entails prevents ready production of a
universal list of recognizer features. In order to be able to report on and discuss the features used in our recognizer,
we generated a representative set of features by conducting an additional two-phase feature selection process on
the full set of normalized data in the study. In this process, we filtered out 125 features (56%) from the original set
of 222 features, then applied cross-validated recursive feature elimination to the remaining 97 features to yield a
final set of 25 representative features, each of which is presented in Table 2. These representative features overlap
substantially with those in the leave-one-out models—a mean of 75.2% appear in each leave-one-out model.

3.6 Results
3.6.1 Descriptive Statistics. For the media used in each affect-session, Table 3 describes the binary affect it was
intended to elicit, the number of study participants self-reporting either positive or negative affect, and a summary
of the amount of data that was recorded. Due to variations in sample rates, we logged a large set of motion
data—approximately 1.802 million samples—and a somewhat reduced set of eye data—0.537 million samples. Eye
data was recorded at a lower rate than expected due to tracking failures resulting from variations in how a user’s
face was positioned and oriented with respect to the phone [58]. Touch data, recorded only during actual touch
input, occurred much less often. A total of 31,588 touches were recorded over the whole study. The table also
notes the number of 15-second sessions we were able to extract from the data—1,927 in total, corresponding to 8
hours, 1 minute and 45 seconds of logging. It is also interesting to note that while elicitation of positive affect
was largely successful, with 93.75% of participants providing a well aligned report of positive affect, elicitation of
negative affect was achieved less reliably. Participants self-assessed their emotions as aligned with our intent to
elicit negative affect in only 65% of affect-sessions.

3.6.2 Overall Classifier Performance. Table 4 displays mean accuracy and class-wise F1-scores for predicting
binary affect using all eight classifiers. RBF-kernel SVM performs best with a mean accuracy of 93.20%. This result
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Table 2. The 25 representative features selected using filter and wrapper methods with linear-kernal SVM with five-fold
cross-validation. Features listed in alphabetical order. Appendix A.3 lists ranked feature importance, calculated via feature
ablation. L=left eye, R=right eye.

Feature Sensor Sub-feature
Acceleration, x-axis Motion maximum, mean, minimum
Acceleration, y-axis Motion maximum, mean, minimum, standard deviation
Acceleration, z-axis Motion mean
Eye squint Eye-tracking minimumL, varianceL
Look in Eye-tracking maximumL,R, meanL, minimumL
Roll Motion mean
Rotation around x-axis Motion mean, minimum
Rotation around y-axis Motion mean
Rotation around z-axis Motion mean, minimum
Touch area Touch maximum, mean
Touch pressure Touch minimum
Yaw Motion maximum, minimum

Table 3. Descriptive statistics of self-reported affect scores, number of records of data for each sensor type and number of
sessions. Elicit.=Elicitation & Responding phases, Assess.=Assessment phase.

Material Format Elicited Self-reported emotion Number of records # of sessions
Emotion Positive Negative Motion Touch Eye Elicit. Assess.

Benny & Joone Video Positive 20 0 283,821 4,669 107,443 257 45
Mary Video Positive 16 4 237,062 4,245 59,539 216 36
IAPS Set 1 Image Positive 19 1 184,477 3,953 46,759 116 82
IAPS set 2 Image Positive 20 0 170,011 3,769 42,532 105 80
Seven Video Negative 12 8 330,380 4,390 137,706 212 136
American History X Video Negative 3 17 261,478 3,671 59,924 179 100
IAPS Set 3 Image Negative 8 12 178,408 3,503 43,510 135 59
IAPS Set 4 Image Negative 5 15 156,316 3,388 39,735 122 47

Table 4. Accuracy and class-wise F1-score (in %) for affect detection in the feasibility study for all eight classifiers and using
data that was normalized relative to cool-down phase. Results from the best performing recognizer, RBF-kernel SVM, are
highlighted in bold.

Metric ZeroR AB DT kNN LR NB RF SVM
Accuracy (%) 66.32 81.37 82.25 91.02 70.89 59.15 90.30 93.20
Positive Affect (F1) 79.71 88.54 85.16 93.38 76.88 62.86 92.53 94.83
Negative Affect (F1) 00.00 73.51 74.01 88.09 61.57 55.91 85.43 89.93

is 25.98% higher than the ZeroR baseline classifier [65] that simply selects the dominant class in the training set.
Based on this strong performance, we limit reporting of follow-up tests to results from only the SVM classifier.
We also note that the F1-scores show a consistent trend in recognition accuracy—the dominant class of positive
affect yields better performance than the minority negative affect class. While reduced performance with a
minority class is not unexpected, we argue that the result from our selected RBF-kernel SVM recognizer (F1-score
of 89.93%) remains strong and is sufficient to warrant further study.
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Table 5. Accuracy (in %) using RBF-kernel SVM models for different feature sets (by sensing channel), study phases,
normalization procedures and media types. Class-wise F1-scores for all models are included in Appendix A.4.

Feature Set Phase Cool-down Within session
Both Video Image Both Video Image

All 93.20 92.04 93.56 83.83 82.17 90.64
All features Elicitation & Responding 91.20 89.35 92.67 78.42 81.51 80.32

Assessment 84.03 83.94 87.22 77.82 75.34 71.52
All 90.35 84.51 89.81 82.91 84.89 72.68

Motion Features Elicitation & Responding 89.79 83.58 87.90 83.11 78.14 84.14
Assessment 82.62 82.87 83.15 70.82 68.51 70.54
All 77.32 78.40 82.39 67.22 68.08 76.94

Touch Features Elicitation & Responding 76.68 78.45 80.44 59.84 57.52 68.89
Assessment 77.52 80.91 79.68 67.62 67.37 71.64
All 83.40 85.92 88.49 67.22 67.45 69.50

Eye-tracking Features Elicitation & Responding 83.61 84.30 85.42 65.78 66.49 67.38
Assessment 59.49 69.54 64.21 54.56 53.27 54.05

3.6.3 Performance of Classifier Variants. We then constructed models from subsets of the data captured in the
study to explore how various aspects of the experimental design impacted recognition performance. Specifically,
for each leave-one-out model we looked at all combinations of the following four variables: the sensor(s) used to
contribute features to the recognizer; the phases data is drawn from; the normalization procedures applied and;
the media used to elicit affect. For sensors, we examined data from all sensors and from the individual channels of
motion, touch and eye-tracking. This analysis sought to assess how the different sensor channels contributed to
the overall recognition performance. In terms of phases, we considered three sets of data: all phases; eliciting
and responding phases and; the assessment phase. The goal of considering these different phases was to assess
classification accuracy of transitory emotions when participants are directly engaged with the viewed contents
(eliciting and responding phases) against that when they were engaged in follow-up tasks, such as self-report of
their emotions (assessment phase). For normalization procedures, we considered use of data from the cool-down
phase to standardize data and also more typical normalization procedures based solely on data from within session.
The goal here was to determine the extent to which the cool-down phase facilitated accurate affect detection.
Finally, in terms of media, we examined data from both media types and also from video media and image media
alone. Here we sought to determine whether the different forms of media led to better or worse classification
accuracy. The goal of these manipulations, in general, was to inform the design of affect recognition systems
in practice by shedding light on what data to capture, when to capture it, how to normalize it and what media
format provides the most reliable basis for accurate classification. The results of these analyses, all using the
optimal RBF-kernel SVM recognizer identified in the initial recognizer comparison, are presented in Table 5
while class-wise F1-scores are in Appendix A.4. We note trends in F1-scores largely follow those in accuracy data.
Accordingly, in the interests of brevity, we base our discussion on this latter metric alone.

These data show the contribution of study methods to the high overall accuracy. In terms of the different sensor
sources, motion shows performance that is most broadly similar to use of the full feature set—accuracy drops by
between 0.92% and 17.96%. This reflects the large number of motion features in the representative feature set (16
from 25), the established links between motion and affect [75, 88] and also the richness, sensitivity and maturity
of these sensor systems. It clearly indicates that use of motion sensors is imperative for any future mobile affect
detection system. Touch performance was under-represented in the representative feature set (3 from 25) and
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shows mixed recognition performance of between 57.52% and 82.39%. This may relate to the relative scarcity of
data captured in this modality compared to the continuous streams of sensor data from motion and eye-tracking.
Regardless, its low performance, in comparison to the two other modalities in the study, casts doubt on its value
as a mechanism for detecting affect in social media scenarios—in these passive, consumption orientated settings,
touch features may be sparse and have limited salience. Finally, eye-tracking also led to mixed performance of
between 53.27% and 88.49%. It performed better with data from elicitation and responding phases compared to
data from assessment phases, with peak accuracies exceeding those achieved with motion sensors. We argue this
indicates that eye-tracking has good potential to serve as an effective tool for affect detection during social media
use on mobile devices and that it appears most valuable in the moments when affect is being directly elicited by
viewed contents.

In terms of the phase used, data from the elicitation and responding phases is relatively similar to data from all
phases (accuracy is reduced by between 0.56% and 10.56%) while data from the assessment phase shows more
strongly reduced performance (of between 0.71% and 24.28%). This again highlights the importance of capturing
behavioral measures during tasks that are affectively salient [44] rather than in dedicated post-session tasks [82]
in order to support high detection accuracy. With regard to the normalization procedures used, the baseline
provided by the cool-down phase provided clear benefits—it led to recognition accuracies of between 2.92%
and 20.93% higher than those achieved with more standard in-session normalization procedures. Finally, the
media format used to elicit affect also impacted recognizer accuracy, with images generally showing limited
improvements in accuracy (of up to 11.37%) over video and both media formats. While our study is not designed
to tease apart an explanation for these differences, candidate possibilities include the fact images more reliably
elicited affect, led to more stable user data (e.g., less variable gaze patterns) or that the input tasks we mandated
during image viewing (horizontal swipes) were particularly salient for affect detection. Alternatively, the fact
that video and image media were not balanced (with images always following videos in each affect condition)
could have influenced these results; while our results show a clear trend, this issue deserves further study in
future work.

3.6.4 Feature Variability with Positive and Negative Affect. To shed light on the specific behaviors that characterize
elicited positive and negative affect, we followed prior work [82] and ran a series of t-tests on the means of each
of the representative features (see Table 2). As this totals 25 independent tests, we applied an alpha threshold
of 0.002 (equivalent to applying Bonferroni correction). This analysis yielded a total of eight significant results,
covering features derived from motion, touch and eye-tracking. In terms of motion, significantly higher mean
acceleration in the x-axes and higher max acceleration in both x- and y-axis (all 𝑝 < 0.001) were associated with
positive affect. Similarly, in terms of filtered rotation data, higher maximum yaw data (𝑝 < 0.001) was also linked
to positive affect. These results suggest that positive affect led to more extreme and substantial motions of the
phone. The touch data corroborate this—significant results indicated that participants produced both larger (in
terms of touch contact area) and more forceful (in terms of applied pressure) taps and swipes when positive affect
was elicited (both 𝑝 < 0.001). These more substantial touches correspond to faster and stronger physical motions
and, indeed, likely contribute directly to the increased movements of the phone as the device shifts in response to
the impacts they represent. Interpreting the remaining two significant results was more challenging. Eye tracking
data showed a single significant result: lower minimum values of the "look in" feature for the left-eye, associated
with gaze to the left of the device, were associated with positive affect (𝑝 < 0.001). Finally, positive affect was
also associated with lower minimum rotation (sensed via the gyroscope) around the device x-axis (𝑝 = 0.002).
Finally, we note these significant differences are well aligned with ranked feature importance data, as calculated
via feature ablation: see Appendix A.3 for details. The eight features that showed significant differences appear in
the top nine ranked features.
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3.7 Discussion
This study builds on prior work that has demonstrated the feasibility of detecting the transitory emotions of users
with smartphone sensors in lab settings involving controlled and protracted input tasks such as repeated data
entry [18], prolonged game play [44] or Fitts’ law targeting tasks [82]. It sought to assess whether or not these
promising prior demonstrations can be applied in more realistic settings where the input tasks undertaken by
users are relatively sparse and interleaved with passive activities such as viewing or reading media contents. The
results suggest smartphones have very strong potential to detect emotions in these settings: we report accuracy
levels as high as 93.20% in the task of distinguishing between explicitly elicited positive and negative affect. This
compares well to prior work in this area which has reported between 76% accuracy in the classification of a set of
multiple dimensional basic emotional states [122] to 90.31% accuracy in the arguably simpler task of predicting
the presence of mood disorders [19].

It is worth discussing a range of factors that likely contribute to this high and improved performance. First and
foremost, compared to prior work on smartphone affect detection, we collected novel forms of data, including both
the previously unexplored channel of eye-tracking and filtered (rather than raw) phone pose data. Together these
channels account for 36% (9 from 25) of the representative feature set shown in Table 2. Eye-tracking features
alone achieved peak affect detection accuracies of 88.49%. The prevalence of these features, together with their
standalone predictive power, strongly suggests that affect detection on smartphones can benefit from emerging
sensor modalities to achieve more accurate performance. Based on the results of this study, we recommend that
filtered pose and eye-tracking be deployed in future smartphone based affect detection systems in order to boost
performance.
Aspects of our study design also likely contribute to the high recognition accuracy we recorded. Motion and

eye-tracking sensor channels tended to yield highest accuracies using data from the Elicitation and Responding
phases of our affect sessions and lower ones with data from the Assessment phase. This highlights the importance
of collecting data during tasks that elicit affect, not in dedicated sessions immediately afterwards [28, 82]. The
transient states we are concerned with in this paper are short lived and the results of this study indicate that the
behavioral markers that can reveal them may be similarly fleeting. We recommend that future affect detection
systems (or study designs) capture data during the critical moments which a user may be experiencing content
that triggers an emotion. Deferring capture of sensor data to separate sessions that occur after viewing affect
eliciting media (e.g., in dedicated post-exposure input tasks such as Fitts tapping [82]) will likely reduce detection
accuracy.

The normalization procedures we applied also impacted recognition accuracy. In line with related prior work
dealing with personality trait prediction from gaze [8], the use of a cool-down period to establish baseline data
immediately prior to affect elicitation sessions was associated with more accurate recognition performance.
While it is not clear how cool-down sessions can be integrated into regular application use on smartphones, the
improved performance we observed (of up to 20.93%) indicates that it would be worthwhile to explore different
approaches to achieve this. One possibility would be to use a rolling window for baseline data, simply normalizing
each affect-session with data from the previous one. We also observed relatively minor variations in classification
accuracy with changes in the media format. Specifically, affect elicitation via images led to generally increased
accuracy (of up to 11.37%) over that achieved with videos. This may be due to differences in how effectively the
images and video content elicited affect—images are reported to be more effective at evoking negative emotions
than videos [8], an issue that may have been particularly prominent in the current study as many (35%, see
Table 3) video based negative affect sessions did not successfully elicit their target affective response. In post-study
comments, participants indicated many of the video clips intended to elicit negative affect were instead narratively
engaging and resulted in mixed or positive emotions such as excitement or curiosity. In future studies in this
area, it may be better to focus solely on image based media to more reliably elicit a full range of emotions.
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It is also worth discussing the statistical differences between the distributions of feature data observed in the
positive and negative affect sessions. In contrast to prior work suggesting that participants exposed to positive
stimuli will exhibit steadier control of their device [82], we observed the opposite and saw more substantial and
variable phone motion in response to eliciting positive affect. A possible explanation for this difference may be
due to the less structured nature of our study tasks: periodic virtual or horizontal swipes, conducted freely with
either the (opposite hand) index finger or (same hand) thumb versus structured repeated tasks such as Fitts’ law
tapping. Salient features in the artificial, performance focused input tasks used in prior work may differ from
those in the more naturalistic tasks employed in the current study. Larger phone motions may also result from
the significantly larger and heavier taps that participants produced in response to elicitation of positive affect.
While these touch features are commonly associated with affect detection studies [54, 82, 83], no prior work has
reported clear trends in this data between emotion classes. While our study can highlight a tentative link, we
note this topic deserves research attention in the future, as identifying clear behavior patterns associated with
particular affective states will do much to simplify, elucidate and expedite the development of this technology.
In summary, the high recognition performance that form the key results of this study are promising. Our

study results suggest that affect detection in tasks reminiscent of social media use is achievable, at meaningful
levels of performance, on commercial mobile devices. However, the ecological validity of these conclusions is
limited by, firstly, the media we used and, secondly, by the tasks we deployed. Firstly, in terms of the media,
while the study was designed to mimic the ways that image and video contents are displayed on social media
platforms, the actual content differed substantially, particularly in terms of content that might yield negative
affect. To put it another way: generic humorous or uplifting images, memes and videos proliferate on social media
[84, 107], showing strong similarities to the content in the study. On the other hand, the material used to elicit
negative affect arguably differed substantially from the types of personally meaningful content that might trigger
such responses in real SNS use via processes such as envy [113] or social comparison [97]. This problem was
particularly clear with the video content, in which a number of participants reported that clips intended to elicit
negative affect were simply exciting or narratively engaging. Secondly, while the input tasks performed moved
away from purely artificial procedures, such as Fitts tapping, they remained quite structured: each participant
navigated through homogeneous content using the same set of basic tap and swipe operations. SNS use in real
world scenarios will, inevitably, involve a much more diverse set of inputs, interactions and behavioral patterns.
It is therefore unclear whether the results of this study will generalize to a more complex and naturalistic set of
input tasks and actions. As the primary goal of this paper is to assess the viability of affect detection during SNS
use, we designed a follow up study to tackle these issues of ecological validity.

4 APPLICATION STUDY
This study was designed to address limitations in the ecological validity of the feasibility study. This was achieved
with a design that logged sensor data continuously but allowed participants to browse their own social media
feeds and receive periodic prompts, which they could ignore or defer, to provide a self-assessment of their current
emotional state. We argue that the use of a user’s genuine social media contents to spontaneously elicit emotions
and the lack of any scripted tasks to provide structured data to facilitate recognition represent key steps towards
determining the viability of affect detection in real world SNS use scenarios. In this way this study moves beyond
both the feasibility study presented in this paper and prior work in this area in general [28, 78, 82]. This study
was approved by the host university’s IRB.

4.1 Design and Materials
This study targeted a relatively naturalistic and realistic social media use scenario. Participants browsed their own
social media feeds in an bespoke app on the same mobile device used in the feasibility study (an Apple iPhone X)
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Fig. 3. User interface of the application: (a) Facebook’s News Feed with a simple button for self-assessment questionnaire,
(b) the button turned blue to signify the ability for submitting self-assessment questionnaire, and (c) self-assessment
questionnaire [12]

and were periodically prompted to provide a self-assessment of their emotional state. The app, shown in Figure 3,
achieved this by presenting two interface panels. The top panel, occupying the majority of the phone screen,
showed Facebook News Feed’s web view. This showed a participant’s standard news feed including content such
as videos, images, posts and advertisements and supported interactions such as entering reactions and comments
in response to content or posting new status updates. Underneath this panel was a simple button inviting users
to provide a self-assessment of their current emotional state. It was labelled “How do you feel now?” and was
initially inactive (greyed out). Three minutes into the study it became active, signified by a change in color to blue,
and participants were then able to select it at their convenience. After selecting it, they were presented with an
emotion self-assessment questionnaire. Upon completion of the questionnaire, the button was again deactivated
for a three minute period. The goal of this structure was to facilitate capture of several self-assessments from
each participant, at times they self-identified as salient, but also to ensure that each self-assessment came after
they had the opportunity to view new feed contents.
The emotional self-assessment instrument used in this study captured a more detailed picture of emotional

state than the tool used in the feasibility study (20-item PANAS self-assessment). This change was motivated
by the fact that a much broader range of emotional states might occur in response to participants browsing
their personal social media feeds than in response to the carefully selected and vetted affective media used in
the previous study. In addition, we sought to minimize the time and cognitive load required to complete the
self-assessment in order to reduce seams in the social media browsing experience. To achieve these objectives,
we followed closely related prior work [82] and deployed two dimensions from the Self-Assessment Manikin
(SAM) [12]. SAM shows sets of pictorial manikins that do not depend on textual guidance and emotion labels. The
manikins depict emotions via facial expressions and bodily reactions and participants select the manikins most
representative of their emotional state. This presentation is reported to be less reliant on abstract thinking and is
not confined to a specific language and thus, broadly accessible for a wide variety of participant populations
including non-English speaking individuals [12, 51]. To align with the two dimensions in the circumplex model,
and following much recent related work [52, 81], we deployed the manikins sets corresponding to valence and
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arousal (see Figure 3c) but omitted those for dominance. The valence dimension is represented as a frowning to a
smiling face, while arousal features manikins in states between sleeping and highly agitated or excited [12]. As
in prior work [77, 82], we transformed both valence and arousal to binary measures by dividing scores at scale
mid-points.

Table 6. The features showing the greatest predictive power for valence and arousal detection in the application study.
Features shown in alphabetical order. L=left eye, R=right eye

Feature Sensor Valence Arousal
Acceleration, y-axis Motion maximum -
Acceleration, z-axis Motion - standard deviation
Blink Eye mean𝐿 , minimum𝐿 , variance𝐿 mean𝐿 , minimum𝐿 , variance𝐿
Distance Touch variance -
Eye squint Eye maximum𝐿 , mean𝐿 minimum𝐿 , mean𝐿
Look down Eye minimum𝐿 , mean𝐿 mean𝐿 , minimum𝐿 , variance𝐿
Look in Eye maximum𝐿 , mean𝐿 , minimum𝐿,𝑅 minimum𝑅 , variance𝐿
Look out Eye maximum𝑅 , mean𝑅 , minimum𝑅 maximum𝐿 , mean𝐿,𝑅 , median𝐿 ,variance𝐿
Look up Eye - variance𝐿
Pitch Motion minimum -
Roll Motion - maximum, mean
Rotation around x-axis Motion maximum, mean minimum
Rotation around y-axis Motion maximum -
Rotation around z-axis Motion - mean
Speed Touch minimum -
Touch area Touch minimum, mean minimum, median
Touch Pressure Touch maximum minimum
Yaw Motion variance maximum

4.2 Procedure
The study took place in a quiet office environment. Participants were first shown a five minute long briefing
video on a laptop that introduced the study, tasks, and provided a short explanation of how to answer the SAM
questionnaire. They were informed they could terminate the study at any time and, if they continued, then signed
consent forms and completed demographics and then logged into their Facebook accounts using the study app.
They then browsed their Facebook feeds for at least 25 minutes, providing self-assessments of their emotional
state at their discretion. After 25 minutes, an experimenter verbally prompted participants to end the study after
completing a final self-assessment at their convenience.

4.3 Participants
Participants were recruited via an online forum and from a different academic institution to the first study. They
were screened to have a Facebook account that they self-reported using at least once per day. They were informed
the study would involve viewing, browsing, or posting content on their private Facebook account for at least 25
minutes, but that no data from their profile or about the content seen or posted during the study would be logged.
Participants were requested not to view their Facebook accounts for two hours prior to their study session. This
was to ensure some previously unseen content would be available on their feeds.

Twenty new participants completed this study (7 male and 13 female) with a mean age of 25.5 (SD=3.53).
Fourteen were undergraduate students and six were graduate students. They reported being experienced computer
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(4.2/5) and smartphone (4.7/5) users. In addition, they actively used SNSs daily (mean hours/day = 2.25, SD=0.97).
To make this study more ecologically valid, we relaxed screening for use of corrective lenses, eye surgery and
eye makeup, targeting a more representative sample of the general population. Three participants reported being
short-sighted. During the experiment, eight participants wore glasses, and two wore contact lenses. Participants
each received $10 for approximately an hour of experimental participation.

4.4 Data Preprocessing
We collected the same features as in the feasibility study and followed similar processes for data imputation
and windowing. We then defined affect-sessions as a period involving the following two phases: an elicitation
phase in which participants browsed and reacted to content on Facebook; and an assessment phase in which
they completed questionnaires. For each affect-session, we explored use of two normalization procedures: the
standard within session approach used in the feasibility study and a new approach that used data from the prior
affect-session to normalize data in the current affect-session. We used these options due to the infeasiblity of
integrating a controlled and explicit cool-down phase into this study’s more naturalistic design. Due to the
brevity of the assessment phase (just 3.6% of the time spent on the study), we did not examine study phase as
a variable and instead used all data from each affect-session for analysis. To define target labels, we computed
binary valence (positive or negative) and arousal (low or high) from the self-report questionnaires completed
in each affect-session by splitting the data at the scale mid-points. Each window in an affect-session was then
assigned the calculated valence and arousal labels.

Procedures closely followed those in the feasibility study. We employed leave-one-subject-out cross-validation
and the same initial set of eight classifiers. Furthermore, at each run, we followed the same classification pipeline
for feature selection and handling imbalances in the data set. Finally, in order to produce a representative set
of features for valence and arousal detection, we again employed the feature selection process on the full set
of within session normalized data. However, unlike in the feasibility study, the recursive feature elimination
procedure was manually configured to select the 25 top features. This ensured the representative feature sets were
the same size as in the initial study. The sets of 25 representative features for valence and arousal detection are
shown in Table 6. These representative features overlap substantially with those in each leave-one-out model—a
mean of 74.3% for valence and 72.6% for arousal appear in each leave-one-out model. Appendix B.1 shows these
features ranked in terms of importance, calculated via feature ablation.

4.5 Results

Table 7. Descriptive statistics of Application Study displaying number of records of data for each sensor type, number of
sessions and self-reported emotion scores

Number of records # of sessions
Self-reported emotion
Valence Arousal

Motion Touch Eye-tracking Positive Negative Low High
1,901,197 24,292 647,061 2022 94 26 85 35

4.5.1 Descriptive Statistics. Participants completed the study in 25.58 minutes to 30.17 minutes (M = 27.98, SD
= 1.61). In addition, Table 7 describes the amount of recorded data and the distribution of self-reported affect
levels. Once again, we logged a large set of motion and eye-tracking data—respectively 1.901 and 0.647 million
samples—and 24293 touches, which we divided into 2022 non-overlapping 15 second windows. This corresponds
to 8 hours, 25 minutes and 30 seconds of data. Participants self-selected the moments and frequency with which
they completed SAM questionnaires, ultimately submitting between one and eight (M = 6, SD = 1.98, total = 120)
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of these assessments. We removed data from one participant who reported no variations in their affective state
and completed SAM only a single time. We also note the distribution of self-reported affective states was uneven.
Participants tended to report positive valence (78.33%) and low-arousal (70.83%), trends that were consistent
throughout the study—we calculated mean valence and arousal scores by submitted assessment and fit linear
models to reveal slopes of just 0.081 and -0.099 respectively. To address these imbalances in the data set, we again
over-sampled the minority class, on training data only, for each emotional scale using SMOTE [23].

4.5.2 Overall Classifier Performance. We calculated the mean accuracy and class-wise F1-score in predicting both
binary valence and binary arousal for the same set of eight classifiers used in the feasibility study. The results
can be seen in Table 8; most closely follow the feasibility study and the RBF-kernel SVM again outperformed
other classifiers; accordingly, all subsequent reporting of the study results include data only from this recognizer.
There was also markedly improved recognition performance (of 5.58% and 8.56%) with the dominant class (either
positive valence or low arousal) over the minority class (negative valence or high arousal) in both affective
dimensions. Regardless accuracy with the minority classes remained relatively high at 87.61% and 90.16%, figures
which we believe are sufficient to support a range of meaningful applications. We also note that, unlike the
feasibility study, these results were achieved without screening participants for use of corrective lenses or makeup,
suggesting they are robust to diversity in the use of such products.

Table 8. Mean accuracy and class-wise F1-scores for valence detection and arousal detection for all eight classifiers, data
normalized based on the prior session and including features from all sensors.

Affective Dim. Metric ZeroR AB DT kNN LR NB RF SVM
Accuracy (%) 75.77 88.87 87.04 91.69 82.00 64.39 92.43 94.16

Valence Positive (F1) 86.19 91.79 91.16 93.77 86.28 69.54 94.86 96.17
Negative (F1) 00.00 76.20 73.84 82.23 66.53 51.28 83.42 87.61
Accuracy (%) 70.53 83.43 81.36 88.48 80.31 61.08 91.74 92.28

Arousal Low (F1) 82.68 89.10 88.86 92.44 87.87 68.62 94.83 95.74
High (F1) 00.00 76.48 73.07 82.48 72.00 53.37 86.10 90.16

4.5.3 Performance of Classifier Variants. We then explored how aspects of the experimental design impacted
the classification performance. Specifically, we looked at combinations of two variables: the sensor(s) used to
contribute features to the recognizer and the normalization procedures applied in this study. In terms of sensors,
we again examined leave-one-subject-out models constructed from all sensors and from the individual modalities
of motion, touch and eye-tracking. For normalization procedures, we examined the differences between scaling
data solely within session or based on data from the immediately prior session. The goal here was to determine
how normalization procedures impacted the accuracy of affect detection. Table 9 displays the results of these
analyses, in terms of classification accuracy achieved by the RBF-kernel SVM recognizer. Corresponding class-wise
F1-scores appear in Appendix B.2.
In terms of the sensor modalities, peak performance relied on all features and reached 94.16% accuracy for

binary valence and 92.28% for binary arousal. There were substantial variations in how strongly features from
each modality appeared in the representative feature sets shown in Table 6. For predicting binary valence, 6
features were from motion, 5 features were from touch, and 14 features were from eye-tracking. In terms of
predicting binary arousal, 6 features were from motion, 3 features were from touch, and 16 features were from
eye-tracking. With motion features alone, performance remained high with modest reductions in accuracy of
between 3.11% (valence) and 5.29% (arousal). Performance with touch features was more substantially reduced,
by 9.00% (valence) and 15.28% (arousal). Finally, the prevalent eye-tracking features performed particularly
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well, leading to reductions of just 1.48% (valence) and 2.96% (arousal). This result is somewhat in contrast to
performance in the feasibility study, where the dominantly selected motion features led to the best performance.
This suggests that participants’ eye movements while browsing their personal social media feeds were a rich
source of information about their affective states, more so than when they were exposed to standardized elicitation
videos and images. In terms of the normalization procedures used, the baseline provided by the prior session
yielded clear benefits. It led to modestly higher accuracies of between 3.61% and 5.64% for valence and between
3.36% and 7.72% for arousal over those achieved with more standard within-session normalization procedures.
This confirms the result from the first study that suggesting that dynamic normalization procedures are necessary
in order to achieve high affect detection performance.

Table 9. Accuracy (in %) for RBF-kernel SVM in predicting binary valence and binary arousal using feature data from different
sensors and subject to different normalization procedures.

Valence Arousal
Normalization Within Session Prior Session Within Session Prior Session
All features 89.51 94.16 88.92 92.28
Motion features 86.40 92.04 83.63 88.77
Touch features 81.55 85.16 73.64 81.36
Eye-tracking features 88.62 92.68 85.96 89.42

4.5.4 Feature Variability with Binary Valence and Binary Arousal. In this section, we examine the specific behaviors
that were associated with variations in binary valence and arousal by reporting on the results of a series of t-tests
on the means feature values in the representative feature sets for both valance and arousal (see Table 6). We
applied an alpha threshold of 0.002 for the 25 independent tests for valence and 25 independent tests for arousal.
This examination revealed eight significant results for valence and four significant results for arousal, covering
features derived from motion and eye-tracking. In terms of motion sensors, significantly lower mean rotation
around the device x-axis (𝑝 < 0.001) and lower maximum rotation around the device y-axis (𝑝 < 0.001) were
associated to positive valence. Results also revealed that significantly lower standard deviation acceleration in
the z-axis (𝑝 < 0.001) and lower maximum yaw data (𝑝 < 0.001) were linked to low-arousal. In contrast to the
feasibility study, we observed that participants with positive valence and low-arousal stimuli demonstrate steadier
control of their device, a result also reported in prior work [82]. One possible explanation for this difference
may be due to more natural settings in this study; participants in this study performed less structured tasks
compared to the systematic and periodically repeated tasks presented in the feasibility study. With regard to
eye-tracking data, we group significant results into two feature types: eye-blinks and eye movements. In terms of
eye-blinks, we report significantly lower mean left-eye blink rates with self-assessments of positive valence (𝑝 <
0.001) and low arousal (𝑝 < 0.001). These findings are in line with prior research indicating that, for example,
words associated with negative affect [86] and images associated with high arousal [42] lead to increased eye
blink rates. Significant results from eye movement were more challenging to interpret. We observed that positive
valence was associated with lower mean and maximum values of left-eye squint (both 𝑝 < 0.001) as well as the
lower look-in values: mean (𝑝 < 0.001) and minimum (𝑝 = 0.001) of the left-eye, and minimum (𝑝 < 0.001) of the
right eye. Finally, low-arousal was associated with lower mean look-out values of the left-eye (𝑝 = 0.001). These
results suggest that positive valence and low-arousal stimuli led to eye movements that were reduced in scale.
Finally, we note that these significant results are well-aligned to the feature rankings, again calculated via feature
ablation, presented in Appendix B.1.
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5 DISCUSSION
In this article, we investigated the possibility of detecting people’s transitory emotional states during social media
use with currently available smartphone sensors: device motion, touch and eye-tracking. To achieve this, we
first conducted a feasibility study in a controlled setting to determine whether promising prior demonstrations
of using such systems to detect binary affect (e.g., in Fitts’ law targeting tasks [82]) transfer to tasks more akin
to those that occur in unscripted social media use. The results indicate that data from smartphone sensors is
sufficient to distinguish between positive and negative affect with an accuracy of up to 93.20% and highlights
elements of our study design that contribute to this strong performance: the use of novel sensor channels such
as eye-tracking; regular calibration sessions; and the capture of sensor data during (as opposed to after) affect
elicitation sessions. We apply these lessons in a follow up study that tackles issues of ecological validity. It
involves logging sensor data and ground truth valence and arousal ratings while participants freely browse and
use their own social media accounts. The results of this study revealed that smartphone sensors can predict
binary valence with an accuracy of 94.16% and binary arousal with 92.28%. These results suggest it is feasible to
detect transitory emotions while consuming or responding to content on social media.
It is worth contrasting the results of our second application study with both our initial feasibility study and

against related prior work. While affect detection accuracies in both our studies are high, one of the most
notable differences is terms of the salient features. In the feasibility study, motion features are prevalent in the
representative feature set and support the highest levels of accuracy in the leave-one-subject-out models. In the
application study, eye-tracking features supplant them on both these measures. Furthermore, the accuracies we
observe from eye-tracking data in the application study compare favourably to those in the literature: 87.59% to
92.36% in the current study versus 58.90% [125] to 86.74% [63] in prior work on eye-tracking based affect detection.
One possible explanation for the high value and performance of eye-tracking features in our application study is
its naturalistic design. Rather than rely on vetted affect elicitation materials [4, 125], we had participants freely
browse their personal social media feeds. This may result in eye behaviors that are simply more salient than
those that occur in response to standard elicitation materials. This observation is in line with prior work that has
suggested that capturing user behaviors in more naturalistic settings may improve the accuracy of sensor based
affect detection systems [66]. Based on these results, we identify eye-tracking as a key sensor modality for future
work on smartphone based affect detection. However, this result is preliminary—we highlight a need for future
studies that more formally compare the use of eye-tracking features for affect detection in a range of scenarios to
develop a more complete understanding of the settings and situations in which it is most effective.
Other aspects of our study design also contributed to the high accuracies we observed. For example, in line

with prior work, our feasibility study showed the benefits of an explicit cool-down phase [8] that can provide
regularly updated baseline data in order to support high affect detection accuracy. However, it is challenging to
integrate this concept into real-world scenarios such as social media use. Our application study took a simple
approach to solving this problem and used data from preceding affect-sessions to normalize current ones, with
resulting improvements in accuracy of up to 4.21% over standard within session normalization. Accordingly, we
recommend that future real-world affect detection systems establish dynamic normalization procedures. Further
work is required to identify the most effective techniques for this—our current approach leveraged aspects of
our study design to identify critical moments (when self-reports of affect were submitted) at which to segment
data into sessions. Such neat seams are unlikely to be observable outside of study settings. Possible alternative
approaches for determining appropriate periods for baselines include the use of simple fixed temporal windows, or
applying the ongoing outcomes of a live affect detection recognizer. The idea here would be to identify affectively
salient moments and use these as breakpoints for “sessions” that can be used to normalize subsequent data.

It is also worth contextualizing our application study in the broader literature dealing with the emotions that
occur during social media use. Our work is partly motivated by prior reports that social media usemay, for example,
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lead to unfavorable social comparison [14], undermine affective well-being [113] or lead to feelings of envy [71].
These are, arguably, undesirable outcomes. However, the application study saw relatively scant examples of the
types of affective state associated with these experiences. Specifically, 78.33% of self-reported emotions in our
application study were categorized as positive valence and 70.83% were labelled as low-arousal. These results
are more in line with prior work indicating that browsing social media makes people feel positive [62] and
relaxed [90], arguably desirable outcomes. While the prevalence of these states does not diminish the importance
of the potentially negative emotional impacts of social media, it does impact how we might consider deploying an
affect detection system to mitigate them. The relative infrequency of negative affect and high valence emotions
(and thus, the content that presumably triggers them) may mean that such systems might be best designed to
support awareness of key affective states (by flagging content that negatively impacts users) or for specific groups
of high risk users (such as those with a history of prior issues).

6 FUTURE WORK AND CONCLUSIONS
Several limitations impact our studies; we consider these as opportunities for future work. In technical terms, our
system is inefficient. In particular, the package we used to retrieve eye-tracking data [33] substantially impacted
CPU use and, therefore, phone battery life. An informal examination of this issue suggests CPU loads with our
study applications approached 75% during eye-tracking and were approximately 30% without it. Until mobile
device eye-tracking becomes less resource intensive, it may be impractical to use it in real world affect detection
scenarios. In addition, the reliability of current mobile device eye-trackers remains questionable. The data
described in this article, for example, features variations between the right and left eyes in terms of behaviors that
are typically coupled, such as blinks. These variations likely reflect a range of sensor quality and environmental
factors (e.g., lighting, handedness) that are beyond the scope of the current article to quantify. They deserve
more detailed study in the future. We see clear benefits in research that seeks to improve the hardware and
software systems used for smartphone eye-tracking and in high quality, independent verification of the objective
performance of such systems in real world use scenarios. In terms of methods, while our application study
sought to improve on the ecological validity of our feasibility study, issues remain. For example, we requested
participants to use their Facebook accounts for at least 25 minutes. While this remains lower than the mean daily
use time for our participants, a single prolonged session may be quite artificial [56] and may have resulted in
atypical behaviors. Future work should examine affect detection in more natural (i.e., likely shorter and more
sporadic) use sessions, for example, in field or diary style studies that take place outside of the lab [46, 122].
Furthermore, the duration of affect-sessions in our application study varies between 3 and 14 minutes. This
means that a pair of binary valance and arousal labels is used to tag diverse periods of social media browsing.
We suggest that further research is needed to define and/or verify the appropriate duration of affect-sessions
in order to maintain validity and achieve high classification accuracy. In addition, future work should explore
whether the findings we present generalize to other SNS services, such as Twitter, Instagram or TikTok, that
exhibit substantially different presentation formats and usage patterns. Finally, while our treatment of affect,
valence and arousal as binary states is common in the literature [26, 63, 82], it is also arguably somewhat coarse
and abstract. Future work should examine detecting affective states with more granularity [28, 45, 46], focus
on a greater variety of affective states (e.g., envy [71]) or tackle more concrete and applied topics. For example,
detecting emotions in social media may be able to contribute to a wide range of critical issues, such as promoting
mental health [109] or identifying depression [90]. By continuing research on these topics and issues, we believe
we can transform the promising results reported in both our feasibility and application studies (respectively, peak
binary affect, valence and arousal detection accuracies of 93.20%, 94.16% and 92.28%) into valuable and effective
tools to support emotionally aware social media services and experiences on smartphones.
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A FEASIBILITY STUDY

A.1 Videos
We list shortened clips from FilmStim library [98] used in this study. The values in a bracket indicate start time
and end time, respectively: Benny Joone [00:00,01:08], There’s Something about Mary (1) [01:13,02:10], Seven (2)
[00:00,01:48], and American History X [00:00,01:20].

A.2 Images
We list IAPS image set [64] for eliciting positive affect: 2035, 2395, 4623, 5200, 5760, 8080, 8190, 8370, 8470, 8499
and another set for eliciting negative affect: 2301, 2455, 2490, 2900, 6520, 6563, 9413, 9902, 9921, 9940.

A.3 Feature Ranking

Table 10. Feature ranking score calculated using feature ablation technique. The p-value is listed for those features that show
significant differences (at an alpha threshold of 0.002) between classes. L=left eye, R=right eye.

Ranking Feature p-value Ranking Feature
1 Acceleration, x-axis (mean) = 0.0002 14 Rotation around x-axis (mean)
2 Yaw (max) = 0.0002 15 Acceleration, y-axis (std)
3 Acceleration, x-axis (max) = 0.0002 16 Look inL (mean)
4 Acceleration, y-axis (max) = 0.0001 17 Acceleration, x-axis (min)
5 Look inL (min) < 0.0000 18 Yaw (min)
6 Rotation around x-axis (min) = 0.0018 19 Acceleration, z-axis (mean)
7 Rotation around y-axis (mean) - 20 Acceleration, y-axis (mean)
8 Touch area (max) < 0.0000 21 Acceleration, y-axis (min)
9 Touch pressure (min) < 0.0000 22 Look inL (max)
10 Rotation around z-axis (mean) - 23 Touch area (mean)
11 Eye squintL (min) - 24 Look inR (max)
12 Roll (mean) - 25 Rotation around z-axis (min)
13 Eye squintL (var) -
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A.4 Class-wise Classification

Table 11. Class-wise classification F1-score using RBF-kernel SVM models for recognizing positive and negative affect for
different feature sets (by sensing channel), study phases, normalization procedures and media types. Elic. Res.=Elicitation &
Responding, Pos.=Positive Affect, Neg.=Negative Affect

Cool-down Within session
Feature Phase Both Video Image Both Video Image

Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg.
All All 94.83 89.93 93.91 88.34 95.25 89.78 87.75 76.02 86.96 70.37 92.92 85.99

Elic. & Res. 93.50 86.16 92.03 83.50 94.85 86.70 83.84 66.94 86.65 68.30 84.91 70.62
Asses. 88.29 74.30 88.30 73.63 90.43 79.19 83.83 64.13 88.30 73.63 90.43 79.19

Motion All 92.67 85.69 87.50 79.30 92.46 83.56 87.17 74.22 88.50 77.46 79.05 59.45
Elic. & Res. 92.44 83.87 87.11 76.58 91.13 79.31 87.19 74.72 68.48 82.91 88.51 71.58
Asses. 87.16 72.43 86.67 74.72 86.95 75.72 78.25 55.01 75.90 51.29 76.62 56.58

Touch All 82.65 66.75 83.89 65.97 86.46 74.46 75.01 51.99 74.76 55.57 82.91 63.16
Elic. & Res. 82.66 64.20 84.60 62.12 85.12 70.99 68.11 45.16 64.80 45.87 77.27 49.80
Asses. 83.35 64.56 85.39 70.57 85.12 65.91 75.60 51.29 76.38 43.44 79.44 53.43

Eye- All 87.13 76.36 89.36 78.44 90.97 83.44 71.78 60.61 72.08 60.41 73.48 63.83
tracking Elic. & Res. 87.63 75.50 88.86 72.57 88.65 78.83 70.98 57.69 71.47 57.91 72.00 59.51

Asses. 64.54 51.49 73.25 63.11 69.33 56.12 59.17 48.05 56.94 46.53 57.78 48.24

B APPLICATION STUDY

B.1 Feature Ranking for Valence and Arousal Detection

Table 12. Feature ranking score for valence detection calculated using feature ablation technique. The p-value is listed for
those features that show significant differences (at an alpha threshold of 0.002) between classes. L=left eye, R=right eye.

Ranking Feature p-value Ranking Feature
1 BlinkL (mean) < 0.0000 14 Rotation around x-axis (max)
2 Rotation around x-axis (mean) = 0.0004 15 Touch area (mean)
3 Eye squintL (mean) < 0.0000 16 Touch area (min)
4 Look inL (mean) = 0.0001 17 Look outR (min)
5 Rotation around y-axis (max) = 0.0002 18 Pitch (min)
6 Look inL (min) = 0.0012 19 BlinkL (min)
7 Look inR (min) < 0.0000 20 Speed (min)
8 Eye squintL (max) = 0.0005 21 BlinkL (var)
9 Touch pressure (max) - 22 Yaw (var)
10 Look inL (max) - 23 Look outR (max)
11 Distance (var) - 24 Look outR (mean)
12 Look downL (mean) - 25 Acceleration, y-axis (max)
13 Look downL (min) -
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Table 13. Feature ranking score for arousal detection calculated using feature ablation technique. The p-value is listed for
those features that show significant differences (at an alpha threshold of 0.002) between classes. L=left eye, R=right eye.

Ranking Feature p-value Ranking Feature
1 BlinkL (mean) < 0.0000 14 Look outL (median)
2 Yaw (max) = 0.0005 15 Look downL (var)
3 Look outL (mean) = 0.0011 16 Look upL (var)
4 Acceleration, z-axis (std) = 0.0002 17 BlinkL (min)
5 Rotation around z-axis (mean) - 18 Touch area (min)
6 Look inR (min) - 19 Look inL (var)
7 Look outR (mean) - 20 Look outL (max)
8 Look downL (min) - 21 Roll (mean)
9 Roll (max) - 22 Rotation around x-axis (min)
10 Look outL (var) - 23 BlinkL (var)
11 Eye squintL (min) - 24 Touch pressure (min)
12 Eye squintL (mean) - 25 Look downL (mean)
13 Touch area (median) -

B.2 Class-wise Classification

Table 14. Class-wise classification F1-score using RBF-kernel SVM models for valence detection and arousal detection for
different feature sets (by sensing channel) and normalization procedures.

Valence Arousal
Normalization Within Session Prior Session Within Session Prior Session
Features Positive Negative Positive Negative Low High Low High
All 93.11 77.63 96.17 87.61 92.27 80.26 95.74 90.16
Motion 91.01 71.99 94.72 83.81 88.30 72.67 91.86 81.57
Touch 87.78 62.16 90.23 69.08 88.30 72.67 91.86 81.57
Eye-tracking 92.43 76.95 95.15 85.02 89.92 76.50 92.38 82.61
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